summaryrefslogtreecommitdiff
path: root/pkgs/development/python-modules/torch/default.nix
blob: c0a1b251d898f609fc623c404e6a9b8ef1ee6c7b (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
{
  stdenv,
  lib,
  fetchFromGitHub,
  fetchFromGitLab,
  git-unroll,
  buildPythonPackage,
  python,
  runCommand,
  writeShellScript,
  config,
  cudaSupport ? config.cudaSupport,
  cudaPackages,
  autoAddDriverRunpath,
  effectiveMagma ?
    if cudaSupport then
      magma-cuda-static
    else if rocmSupport then
      magma-hip
    else
      magma,
  magma,
  magma-hip,
  magma-cuda-static,
  # Use the system NCCL as long as we're targeting CUDA on a supported platform.
  useSystemNccl ? (cudaSupport && !cudaPackages.nccl.meta.unsupported || rocmSupport),
  MPISupport ? false,
  mpi,
  buildDocs ? false,

  # tests.cudaAvailable:
  callPackage,

  # Native build inputs
  cmake,
  symlinkJoin,
  which,
  pybind11,
  removeReferencesTo,

  # Build inputs
  apple-sdk_13,
  numactl,

  # dependencies
  astunparse,
  expecttest,
  filelock,
  fsspec,
  hypothesis,
  jinja2,
  networkx,
  packaging,
  psutil,
  pyyaml,
  requests,
  sympy,
  types-dataclasses,
  typing-extensions,
  # ROCm build and `torch.compile` requires `triton`
  tritonSupport ? (!stdenv.hostPlatform.isDarwin),
  triton,

  # TODO: 1. callPackage needs to learn to distinguish between the task
  #          of "asking for an attribute from the parent scope" and
  #          the task of "exposing a formal parameter in .override".
  # TODO: 2. We should probably abandon attributes such as `torchWithCuda` (etc.)
  #          as they routinely end up consuming the wrong arguments\
  #          (dependencies without cuda support).
  #          Instead we should rely on overlays and nixpkgsFun.
  # (@SomeoneSerge)
  _tritonEffective ? if cudaSupport then triton-cuda else triton,
  triton-cuda,

  # Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
  # this is also what official pytorch build does
  mklDnnSupport ? !(stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isAarch64),

  # virtual pkg that consistently instantiates blas across nixpkgs
  # See https://github.com/NixOS/nixpkgs/pull/83888
  blas,

  # ninja (https://ninja-build.org) must be available to run C++ extensions tests,
  ninja,

  # dependencies for torch.utils.tensorboard
  pillow,
  six,
  tensorboard,
  protobuf,

  # ROCm dependencies
  rocmSupport ? config.rocmSupport,
  rocmPackages_5,
  gpuTargets ? [ ],

  vulkanSupport ? false,
  vulkan-headers,
  vulkan-loader,
  shaderc,
}:

let
  inherit (lib)
    attrsets
    lists
    strings
    trivial
    ;
  inherit (cudaPackages) cudaFlags cudnn nccl;

  triton = throw "python3Packages.torch: use _tritonEffective instead of triton to avoid divergence";

  rocmPackages = rocmPackages_5;

  setBool = v: if v then "1" else "0";

  # https://github.com/pytorch/pytorch/blob/v2.4.0/torch/utils/cpp_extension.py#L1953
  supportedTorchCudaCapabilities =
    let
      real = [
        "3.5"
        "3.7"
        "5.0"
        "5.2"
        "5.3"
        "6.0"
        "6.1"
        "6.2"
        "7.0"
        "7.2"
        "7.5"
        "8.0"
        "8.6"
        "8.7"
        "8.9"
        "9.0"
        "9.0a"
      ];
      ptx = lists.map (x: "${x}+PTX") real;
    in
    real ++ ptx;

  # NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
  #   of the first list *from* the second list. That means:
  #   lists.subtractLists a b = b - a

  # For CUDA
  supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
  unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;

  isCudaJetson = cudaSupport && cudaPackages.cudaFlags.isJetsonBuild;

  # Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
  gpuArchWarner =
    supported: unsupported:
    trivial.throwIf (supported == [ ]) (
      "No supported GPU targets specified. Requested GPU targets: "
      + strings.concatStringsSep ", " unsupported
    ) supported;

  # Create the gpuTargetString.
  gpuTargetString = strings.concatStringsSep ";" (
    if gpuTargets != [ ] then
      # If gpuTargets is specified, it always takes priority.
      gpuTargets
    else if cudaSupport then
      gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
    else if rocmSupport then
      rocmPackages.clr.gpuTargets
    else
      throw "No GPU targets specified"
  );

  rocmtoolkit_joined = symlinkJoin {
    name = "rocm-merged";

    paths = with rocmPackages; [
      rocm-core
      clr
      rccl
      miopen
      miopengemm
      rocrand
      rocblas
      rocsparse
      hipsparse
      rocthrust
      rocprim
      hipcub
      roctracer
      rocfft
      rocsolver
      hipfft
      hipsolver
      hipblas
      rocminfo
      rocm-thunk
      rocm-comgr
      rocm-device-libs
      rocm-runtime
      clr.icd
      hipify
    ];

    # Fix `setuptools` not being found
    postBuild = ''
      rm -rf $out/nix-support
    '';
  };

  brokenConditions = attrsets.filterAttrs (_: cond: cond) {
    "CUDA and ROCm are mutually exclusive" = cudaSupport && rocmSupport;
    "CUDA is not targeting Linux" = cudaSupport && !stdenv.hostPlatform.isLinux;
    "Unsupported CUDA version" =
      cudaSupport
      && !(builtins.elem cudaPackages.cudaMajorVersion [
        "11"
        "12"
      ]);
    "MPI cudatoolkit does not match cudaPackages.cudatoolkit" =
      MPISupport && cudaSupport && (mpi.cudatoolkit != cudaPackages.cudatoolkit);
    # This used to be a deep package set comparison between cudaPackages and
    # effectiveMagma.cudaPackages, making torch too strict in cudaPackages.
    # In particular, this triggered warnings from cuda's `aliases.nix`
    "Magma cudaPackages does not match cudaPackages" =
      cudaSupport && (effectiveMagma.cudaPackages.cudaVersion != cudaPackages.cudaVersion);
    "Rocm support is currently broken because `rocmPackages.hipblaslt` is unpackaged. (2024-06-09)" =
      rocmSupport;
  };

  unroll-src = writeShellScript "unroll-src" ''
    echo "{
      version,
      fetchFromGitLab,
      fetchFromGitHub,
      runCommand,
    }:
    assert version == "'"'$1'"'";"
    ${lib.getExe git-unroll} https://github.com/pytorch/pytorch v$1
    echo
    echo "# Update using: unroll-src [version]"
  '';
in
buildPythonPackage rec {
  pname = "torch";
  # Don't forget to update torch-bin to the same version.
  version = "2.5.1";
  pyproject = true;

  outputs = [
    "out" # output standard python package
    "dev" # output libtorch headers
    "lib" # output libtorch libraries
    "cxxdev" # propagated deps for the cmake consumers of torch
  ];
  cudaPropagateToOutput = "cxxdev";

  src = callPackage ./src.nix {
    inherit
      version
      fetchFromGitHub
      fetchFromGitLab
      runCommand
      ;
  };

  patches =
    [ ./clang19-template-warning.patch ]
    ++ lib.optionals cudaSupport [ ./fix-cmake-cuda-toolkit.patch ]
    ++ lib.optionals stdenv.hostPlatform.isLinux [
      # Propagate CUPTI to Kineto by overriding the search path with environment variables.
      # https://github.com/pytorch/pytorch/pull/108847
      ./pytorch-pr-108847.patch
    ]
    ++ lib.optionals (lib.getName blas.provider == "mkl") [
      # The CMake install tries to add some hardcoded rpaths, incompatible
      # with the Nix store, which fails. Simply remove this step to get
      # rpaths that point to the Nix store.
      ./disable-cmake-mkl-rpath.patch
    ];

  postPatch =
    ''
      substituteInPlace cmake/public/cuda.cmake \
        --replace-fail \
          'message(FATAL_ERROR "Found two conflicting CUDA' \
          'message(WARNING "Found two conflicting CUDA' \
        --replace-warn \
          "set(CUDAToolkit_ROOT" \
          "# Upstream: set(CUDAToolkit_ROOT"
      substituteInPlace third_party/gloo/cmake/Cuda.cmake \
        --replace-warn "find_package(CUDAToolkit 7.0" "find_package(CUDAToolkit"

      # annotations (3.7), print_function (3.0), with_statement (2.6) are all supported
      sed -i -e "/from __future__ import/d" **.py
    ''
    + lib.optionalString rocmSupport ''
      # https://github.com/facebookincubator/gloo/pull/297
      substituteInPlace third_party/gloo/cmake/Hipify.cmake \
        --replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"

      # Replace hard-coded rocm paths
      substituteInPlace caffe2/CMakeLists.txt \
        --replace "/opt/rocm" "${rocmtoolkit_joined}" \
        --replace "hcc/include" "hip/include" \
        --replace "rocblas/include" "include/rocblas" \
        --replace "hipsparse/include" "include/hipsparse"

      # Doesn't pick up the environment variable?
      substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
        --replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
        --replace "/opt/rocm" "${rocmtoolkit_joined}"

      # Strangely, this is never set in cmake
      substituteInPlace cmake/public/LoadHIP.cmake \
        --replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
          "set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitVersion rocmPackages.clr.version))})"
    ''
    # Detection of NCCL version doesn't work particularly well when using the static binary.
    + lib.optionalString cudaSupport ''
      substituteInPlace cmake/Modules/FindNCCL.cmake \
        --replace \
          'message(FATAL_ERROR "Found NCCL header version and library version' \
          'message(WARNING "Found NCCL header version and library version'
    ''
    # Remove PyTorch's FindCUDAToolkit.cmake and use CMake's default.
    # NOTE: Parts of pytorch rely on unmaintained FindCUDA.cmake with custom patches to support e.g.
    # newer architectures (sm_90a). We do want to delete vendored patches, but have to keep them
    # until https://github.com/pytorch/pytorch/issues/76082 is addressed
    + lib.optionalString cudaSupport ''
      rm cmake/Modules/FindCUDAToolkit.cmake
    '';

  # NOTE(@connorbaker): Though we do not disable Gloo or MPI when building with CUDA support, caution should be taken
  # when using the different backends. Gloo's GPU support isn't great, and MPI and CUDA can't be used at the same time
  # without extreme care to ensure they don't lock each other out of shared resources.
  # For more, see https://github.com/open-mpi/ompi/issues/7733#issuecomment-629806195.
  preConfigure =
    lib.optionalString cudaSupport ''
      export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
      export CUPTI_INCLUDE_DIR=${lib.getDev cudaPackages.cuda_cupti}/include
      export CUPTI_LIBRARY_DIR=${lib.getLib cudaPackages.cuda_cupti}/lib
    ''
    + lib.optionalString (cudaSupport && cudaPackages ? cudnn) ''
      export CUDNN_INCLUDE_DIR=${lib.getLib cudnn}/include
      export CUDNN_LIB_DIR=${cudnn.lib}/lib
    ''
    + lib.optionalString rocmSupport ''
      export ROCM_PATH=${rocmtoolkit_joined}
      export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
      export PYTORCH_ROCM_ARCH="${gpuTargetString}"
      export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
      python tools/amd_build/build_amd.py
    '';

  # Use pytorch's custom configurations
  dontUseCmakeConfigure = true;

  # causes possible redefinition of _FORTIFY_SOURCE
  hardeningDisable = [ "fortify3" ];

  BUILD_NAMEDTENSOR = setBool true;
  BUILD_DOCS = setBool buildDocs;

  # We only do an imports check, so do not build tests either.
  BUILD_TEST = setBool false;

  # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
  # it by default. PyTorch currently uses its own vendored version
  # of oneDNN through Intel iDeep.
  USE_MKLDNN = setBool mklDnnSupport;
  USE_MKLDNN_CBLAS = setBool mklDnnSupport;

  # Avoid using pybind11 from git submodule
  # Also avoids pytorch exporting the headers of pybind11
  USE_SYSTEM_PYBIND11 = true;

  # NB technical debt: building without NNPACK as workaround for missing `six`
  USE_NNPACK = 0;

  # Explicitly enable MPS for Darwin
  USE_MPS = setBool stdenv.hostPlatform.isDarwin;

  # building torch.distributed on Darwin is disabled by default
  # https://pytorch.org/docs/stable/distributed.html#torch.distributed.is_available
  USE_DISTRIBUTED = setBool true;

  cmakeFlags =
    [
      # (lib.cmakeBool "CMAKE_FIND_DEBUG_MODE" true)
      (lib.cmakeFeature "CUDAToolkit_VERSION" cudaPackages.cudaVersion)
    ]
    ++ lib.optionals cudaSupport [
      # Unbreaks version discovery in enable_language(CUDA) when wrapping nvcc with ccache
      # Cf. https://gitlab.kitware.com/cmake/cmake/-/issues/26363
      (lib.cmakeFeature "CMAKE_CUDA_COMPILER_TOOLKIT_VERSION" cudaPackages.cudaVersion)
    ];

  preBuild = ''
    export MAX_JOBS=$NIX_BUILD_CORES
    ${python.pythonOnBuildForHost.interpreter} setup.py build --cmake-only
    ${cmake}/bin/cmake build
  '';

  preFixup = ''
    function join_by { local IFS="$1"; shift; echo "$*"; }
    function strip2 {
      IFS=':'
      read -ra RP <<< $(patchelf --print-rpath $1)
      IFS=' '
      RP_NEW=$(join_by : ''${RP[@]:2})
      patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
    }
    for f in $(find ''${out} -name 'libcaffe2*.so')
    do
      strip2 $f
    done
  '';

  # Override the (weirdly) wrong version set by default. See
  # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
  # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
  PYTORCH_BUILD_VERSION = version;
  PYTORCH_BUILD_NUMBER = 0;

  # In-tree builds of NCCL are not supported.
  # Use NCCL when cudaSupport is enabled and nccl is available.
  USE_NCCL = setBool useSystemNccl;
  USE_SYSTEM_NCCL = USE_NCCL;
  USE_STATIC_NCCL = USE_NCCL;

  # Set the correct Python library path, broken since
  # https://github.com/pytorch/pytorch/commit/3d617333e
  PYTHON_LIB_REL_PATH = "${placeholder "out"}/${python.sitePackages}";

  env =
    {
      # disable warnings as errors as they break the build on every compiler
      # bump, among other things.
      # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
      # https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
      NIX_CFLAGS_COMPILE = "-Wno-error";
      USE_VULKAN = setBool vulkanSupport;
    }
    // lib.optionalAttrs vulkanSupport {
      VULKAN_SDK = shaderc.bin;
    };

  nativeBuildInputs =
    [
      cmake
      which
      ninja
      pybind11
      removeReferencesTo
    ]
    ++ lib.optionals cudaSupport (
      with cudaPackages;
      [
        autoAddDriverRunpath
        cuda_nvcc
      ]
    )
    ++ lib.optionals isCudaJetson [ cudaPackages.autoAddCudaCompatRunpath ]
    ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];

  buildInputs =
    [
      blas
      blas.provider
    ]
    ++ lib.optionals cudaSupport (
      with cudaPackages;
      [
        cuda_cccl # <thrust/*>
        cuda_cudart # cuda_runtime.h and libraries
        cuda_cupti # For kineto
        cuda_nvcc # crt/host_config.h; even though we include this in nativeBuildInputs, it's needed here too
        cuda_nvml_dev # <nvml.h>
        cuda_nvrtc
        cuda_nvtx # -llibNVToolsExt
        libcublas
        libcufft
        libcurand
        libcusolver
        libcusparse
      ]
      ++ lists.optionals (cudaPackages ? cudnn) [ cudnn ]
      ++ lists.optionals useSystemNccl [
        # Some platforms do not support NCCL (i.e., Jetson)
        nccl # Provides nccl.h AND a static copy of NCCL!
      ]
      ++ lists.optionals (strings.versionOlder cudaVersion "11.8") [
        cuda_nvprof # <cuda_profiler_api.h>
      ]
      ++ lists.optionals (strings.versionAtLeast cudaVersion "11.8") [
        cuda_profiler_api # <cuda_profiler_api.h>
      ]
    )
    ++ lib.optionals rocmSupport [ rocmPackages.llvm.openmp ]
    ++ lib.optionals (cudaSupport || rocmSupport) [ effectiveMagma ]
    ++ lib.optionals stdenv.hostPlatform.isLinux [ numactl ]
    ++ lib.optionals stdenv.hostPlatform.isDarwin [
      apple-sdk_13
    ]
    ++ lib.optionals tritonSupport [ _tritonEffective ]
    ++ lib.optionals MPISupport [ mpi ]
    ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];

  pythonRelaxDeps = [
    "sympy"
  ];
  dependencies =
    [
      astunparse
      expecttest
      filelock
      fsspec
      hypothesis
      jinja2
      networkx
      ninja
      packaging
      psutil
      pyyaml
      requests
      sympy
      types-dataclasses
      typing-extensions

      # the following are required for tensorboard support
      pillow
      six
      tensorboard
      protobuf

      # torch/csrc requires `pybind11` at runtime
      pybind11
    ]
    ++ lib.optionals tritonSupport [ _tritonEffective ]
    ++ lib.optionals vulkanSupport [
      vulkan-headers
      vulkan-loader
    ];

  propagatedCxxBuildInputs =
    [ ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];

  # Tests take a long time and may be flaky, so just sanity-check imports
  doCheck = false;

  pythonImportsCheck = [ "torch" ];

  nativeCheckInputs = [
    hypothesis
    ninja
    psutil
  ];

  checkPhase =
    with lib.versions;
    with lib.strings;
    concatStringsSep " " [
      "runHook preCheck"
      "${python.interpreter} test/run_test.py"
      "--exclude"
      (concatStringsSep " " [
        "utils" # utils requires git, which is not allowed in the check phase

        # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
        # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build

        # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
        (optionalString (majorMinor version == "1.3") "tensorboard")
      ])
      "runHook postCheck"
    ];

  pythonRemoveDeps = [
    # In our dist-info the name is just "triton"
    "pytorch-triton-rocm"
  ];

  postInstall =
    ''
      find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +

      mkdir $dev

      # CppExtension requires that include files are packaged with the main
      # python library output; which is why they are copied here.
      cp -r $out/${python.sitePackages}/torch/include $dev/include

      # Cmake files under /share are different and can be safely moved. This
      # avoids unnecessary closure blow-up due to apple sdk references when
      # USE_DISTRIBUTED is enabled.
      mv $out/${python.sitePackages}/torch/share $dev/share

      # Fix up library paths for split outputs
      substituteInPlace \
        $dev/share/cmake/Torch/TorchConfig.cmake \
        --replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"

      substituteInPlace \
        $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
        --replace \''${_IMPORT_PREFIX}/lib "$lib/lib"

      mkdir $lib
      mv $out/${python.sitePackages}/torch/lib $lib/lib
      ln -s $lib/lib $out/${python.sitePackages}/torch/lib
    ''
    + lib.optionalString rocmSupport ''
      substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
        --replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"

      substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
        --replace "/build/source/torch/include" "$dev/include"
    '';

  postFixup =
    ''
      mkdir -p "$cxxdev/nix-support"
      printWords "''${propagatedCxxBuildInputs[@]}" >> "$cxxdev/nix-support/propagated-build-inputs"
    ''
    + lib.optionalString stdenv.hostPlatform.isDarwin ''
      for f in $(ls $lib/lib/*.dylib); do
          install_name_tool -id $lib/lib/$(basename $f) $f || true
      done

      install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
      install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
      install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib

      install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib

      install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
      install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
    '';

  # See https://github.com/NixOS/nixpkgs/issues/296179
  #
  # This is a quick hack to add `libnvrtc` to the runpath so that torch can find
  # it when it is needed at runtime.
  extraRunpaths = lib.optionals cudaSupport [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ];
  postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ];
  postPatchelfPhase = ''
    while IFS= read -r -d $'\0' elf ; do
      for extra in $extraRunpaths ; do
        echo patchelf "$elf" --add-rpath "$extra" >&2
        patchelf "$elf" --add-rpath "$extra"
      done
    done < <(
      find "''${!outputLib}" "$out" -type f -iname '*.so' -print0
    )
  '';

  # Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
  requiredSystemFeatures = [ "big-parallel" ];

  passthru = {
    inherit
      cudaSupport
      cudaPackages
      rocmSupport
      rocmPackages
      unroll-src
      ;
    cudaCapabilities = if cudaSupport then supportedCudaCapabilities else [ ];
    # At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
    blasProvider = blas.provider;
    # To help debug when a package is broken due to CUDA support
    inherit brokenConditions;
    tests = callPackage ./tests.nix { };
  };

  meta = {
    changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
    # keep PyTorch in the description so the package can be found under that name on search.nixos.org
    description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
    homepage = "https://pytorch.org/";
    license = lib.licenses.bsd3;
    maintainers = with lib.maintainers; [
      teh
      thoughtpolice
      tscholak
    ]; # tscholak esp. for darwin-related builds
    platforms =
      lib.platforms.linux
      ++ lib.optionals (!cudaSupport && !rocmSupport) lib.platforms.darwin;
    broken = builtins.any trivial.id (builtins.attrValues brokenConditions);
  };
}